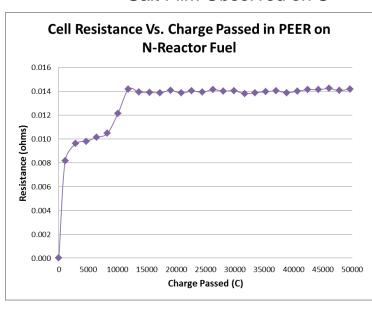
INVESTIGATION OF THE POLARIZATION BEHAVIOR OF URANIUM IN LICI-KCI MOLTEN SALT

M. Rose^{1,2}, M. Williamson², and J. Willit²

¹School of Nuclear Engineering, 400 Central Drive, Purdue University, West Lafayette, IN 47907

²Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439



Electrorefining Experience

- Developing a corrosion theory based electrorefiner model
 - Requires detailed polarization behavior for uranium
 - Requires Tafel constant and exchange current density for U/U³⁺
- Experiments conducted at engineeringscale with uranium to validate a process model
 - Observed flaking black salt film and residue in anode basket
 - Observed two step resistance behavior

Salt Film Observed on U

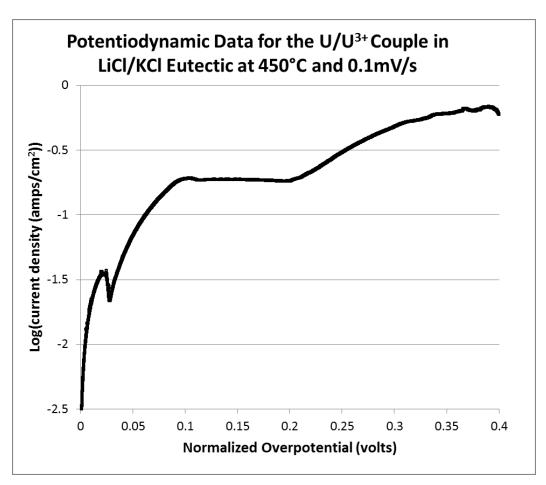
Goal

- Examine polarization behavior of uranium
 - Collect potentiodynamic data over wide potential range
 - Sample film material and analyze for composition
 - Develop mathematical model for polarization behavior
- Determine Tafel constant and exchange current density
 - Collect data in pre-Tafel Region to avoid film formation
 - Use Oldham-Mansfeld method to determine, β and i_o
- Use the polarization model and Tafel parameters to simulate electrorefining

Experiment Design

- Studied anodic dissolution of U in LiCl/KCl eutectic
- Three Electrode Cell:
 - Working -Uranium rod
 - Counter Tungsten rod
 - Reference -Ag/AgCl in Mulite
 - Solartron 1285 Potentiostat
- Potentiodynamic scans(PDS)
 - Temperatures range 450-650°C in 50° intervals
 - Scan rates of 0.1, 0.166 and 1mV/s
 - Scanned from -0.2V to 0.5V
- Working electrode was raised/lowered using a vertical translator to give accurate control of immersion depth

Uranium Electrode

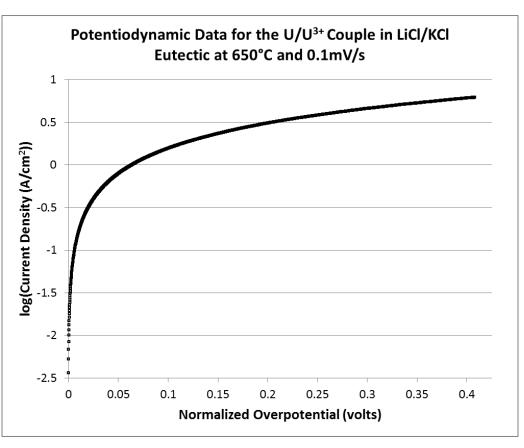

Electrodes and Vertical Translator
Device of Test Cell

Low Temperature Anodic Behavior

Anodic PDS at 450 and 500°C showed several distinct features:

- Small reaction peak at low overpotential (10-50mV)
- Passivation at intermediate overpotential (125-275mV)
- Polishing dissolution at overpotentials above
 250mV

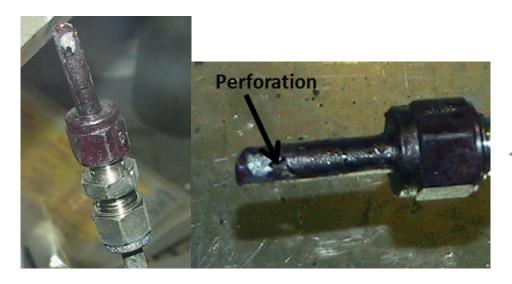
Sample of anodic potentiodynamic data at 450°C and 0.1mV/s.


High Temperature Anodic Behavior

Anodic PDS at 650°C:

Polarization follows
 Tafel behavior

Overall polarization behavior:

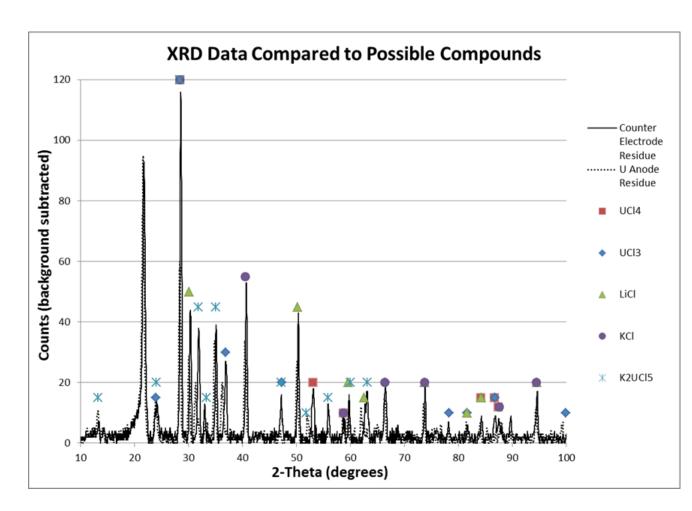

- Temperature dependent
- As T rises polarization features disappear

Sample of anodic potentiodynamic data at 650°C and 1mV/s

Film Analysis

- Film was removed from cooled uranium rod post-testing
 - Abraded with steel file, collected powder
 - Examined with XRD, SEM and ICP-MS
- Electrode was mounted in acrylic, and sectioned
 - Examined with SEM

- After PDS at 500°C,
 0.01mV/s electrode was discovered to be hollow
- Powder removed from light gray section
 - Perforated electrode in the process

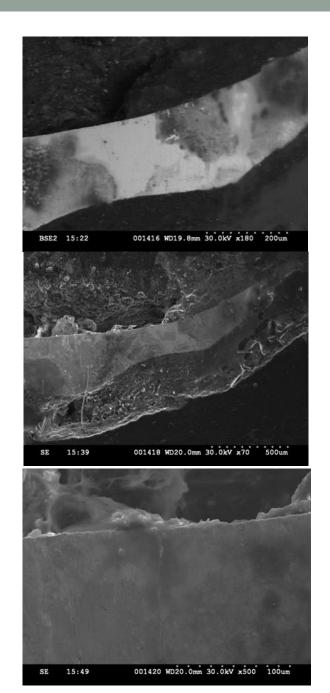

X-Ray Diffraction Data

Two powder samples analyzed:

- From uranium working electrode used in PDS experiments
- From preliminary experimenturanium counter electrode

Film powder samples are a mixture:

- Electrorefiner salt (LiCl, KCl, UCl₃)
- K₂UCl₅


SEM and ICP-MS Data

ICP-MS data for powder samples:

- Uranium working electrode
 - 2.77 mol % uranium
 - 96.6 mol% salt
- Uranium counter electrode
 - 0.24 mol% uranium
 - 79.7 mol% salt

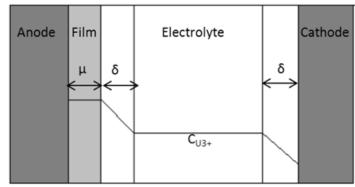
SEM data for sectioned hollow rod:

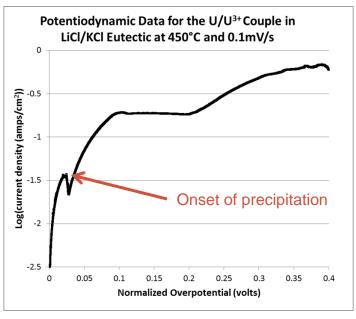
- Used 30kV for analysis
- Showed non-uniform corrosion
- Evidence of cracks with enhanced corrosion at the surface
- Electrode-electrolyte interfacial uranium concentrations
 - 1.6 to 28.6 mol%

Explanation of Polarization Behavior

K₂UCl₅ precipitates at the electrodeelectrolyte interface above a critical concentration

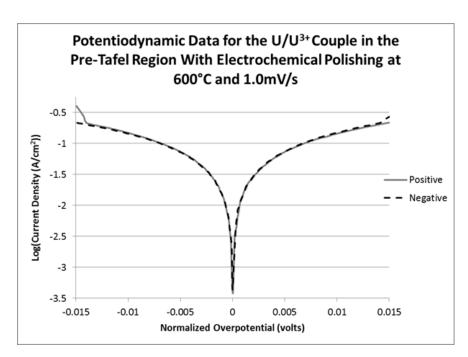
Perhaps ~6 mol% at 450°C


First feature in the low T polarization data is the onset of the precipitation


Passivation occurs when surface blockage is balanced with the polarization of the electrode

Breakdown of film occurs at > 250mV with two possible mechanisms

- Dissolution of film exceeds buildup
- Film develops internal stress and cracks


At T>626°C no solid phases are present in the LiCl-KCl-UCl₃ system

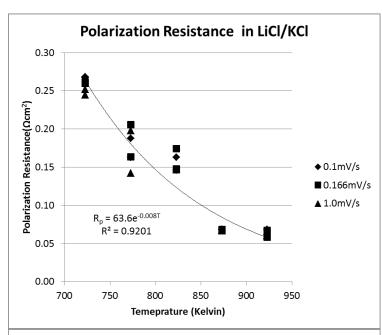
Tafel Constant and Exchange Current Density

- Scanned potentiodynamically in the pre-Tafel range, ±15mV, to avoid film formation
 - Electropolished at 7.5mV for 300s to create identical electrode surface
 - Allowed to equilibrate between tests after polishing
 - Positive and negative scan directions
 - Scan rates of 0.1, 0.166 and 1.0 mV/s
 - Temperatures between 450°C and 650°C in 50° intervals

Tafel Constants

Oldham-Mansfeld Method

-Find R_p at ± 1 mV from:


$$\frac{d\eta}{di}\bigg|_{\eta_{corr}} = R_p$$

- -Plot 2.3R_pi vs. η
 - -Use Origin software to fit curve
 - -Obtain β_a and β_c from:

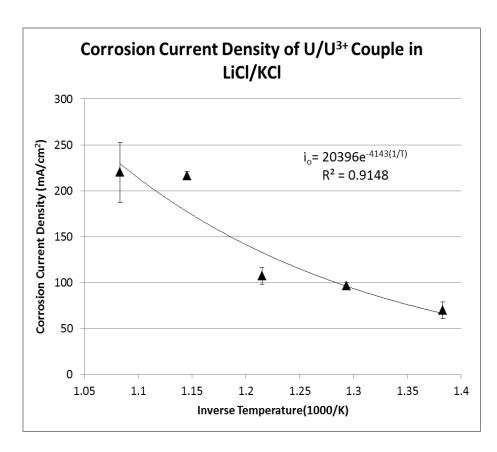
$$2.3R_p i = \left[\frac{\beta_a \beta_c}{(\beta_a + \beta_c)}\right] \left(e^{\frac{2.3\eta}{\beta_a}} - e^{\frac{-2.3\eta}{\beta_c}}\right)$$

-Tafel constants show inverse relationship with T. Likely due to transfer coefficient's relationship with T

$$\beta = \frac{RT}{2.3\alpha(T)nF}$$

Exchange Current Density

Used Tafel constants fitted from Origin to find corrosion current density from :


$$i_{corr} = \frac{\beta_a \beta_c}{2.3 R_p (\beta_a + \beta_c)}$$

i_{corr}= i_o (exchange current density) if only one redox couple is present
 Confirmed U/U³⁺ by CV

Calculated activation energy from Arhenius relationship

$$i_0 = nFAe^{\frac{-E_A}{RT}}[C_o]^{(1-\alpha)}[C_R]^{\alpha}$$

$$E_{\Delta} = 34.4 \text{kJ/mol}$$

Comparison of Tafel Parameters to Literature

- Tafel slope at 500°C
 - reported by Gosh et al.- 98.5± 4mV
 - Reported here- 86.6± 2.8mV
- Exchange Current Density at 500°C
 - Reported by Gosh et al.- 8± 2mA/cm²
 - Reported here- 96.6± 3.0mA/cm²
- Differences in Method:
 - Gosh ignored the effects of low temperature uranium polarization observed in this work
 - Gosh used Tafel extrapolation of the anodic branch only
 - Not recommended by Scully

Summary

- Anodic PDS show temperature dependent behavior
 - At T<626°C
 - K₂UCl₅ precipitates as U³⁺ ions reach critical concentration in the diffusion layer
 - Presence confirmed by XRD
 - Likely forms at cracks and crevices
 - Kinetic balance between surface coverage and polarization causes passivation region of polarization curve
 - Breakdown occurs at η >250mV
 - At T>626°C
 - Simple Tafel behavior
- Pre-Tafel region PDS data gave precise β and i₀ by the Oldham-Mansfeld method
 - At 500°C: $\beta_a = 86.6 \pm 2.8$ mV and $i_o = 96.6 \pm 3.0$ mA/cm²

References

- [1] Van Kleeck M., Willit J., Williamson M.A., and Fentiman A.W. "Experiments in Anodic Film Effects During Electrorefining of Scrap U-10Mo Fuels in Support of Modeling Efforts". *GLOBAL 2013: International Fuel Cycle Conference*. Salt Lake City, UT. Sept. 29th- Oct. 3rd,2013.
- [2] A. Nakayoshi, S. Kitawaki, M. Fukushima, T. Murakami and M. Kurata. J. of Nucl. Mater. 441(2013) 468-472.
- [3] F. Mansfeld, Corrosion Science, 47, 3178 (2005).
- [4] J.R. Scully. Critical Review of Corrosion Science and Engineering, **56**, 199 (2000).
- [5] S. Gosh, S. Vandarkuzhali, N. Gogoi, P. Venkatesh, G. Seenivasan, B. Prabhakara Reddy, and K. Nagarajan, *Electrochimica Acta*, **56**, 8204 (2011).
- [6] J.R. Scully, in *Corrosion Tests and Standards: Application and Interpretation*, 2nd ed., R. Baboian, Editor, p.107, ASTM International, Pennsylvania (2005).

Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC.

Government License Notice

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.